

PARA LIGHT ELECTRONICS CO., LTD.

11F., No. 8, Jiankang Rd., Zhonghe Dist., New Taipei City 235, Taiwan,Tel: 886-2-2225-3733Fax: 886-2-2225-4800E-mail: para@para.com.twwww.paralighttaiwan.com

DATA SHEET

PART NO.: LH34D202C-HTS

A/5

CUSTOMER'S APPROVAL :

DCC :

DRAWING NO. : DS-60-17-0034


DATE : 2019-09-21

LH34D202C-HTS

REV:A/5

PACKAGE DIMENSIONS

PARA	4
ight	

LH34D202C-HTS

REV:A/5

FEATURES

- * 3.0mm DIA LED LAMP
- * LOW POWER CONSUMPTION.
- * I.C. COMPATIBLE.
- * LONG LIFE SOLID STATE RELIABILITY.
- * PB FREE PRODUCTS(Compliant with EU's RoHS.)

CHIP MATERIALS

- * Dice Material : GaAlInP/GaAs
- * Light Color : Yellow
- * Lens Color : Yellow Diffused

ABSOLUTE MAXIMUM RATING : (Ta = 25°C)

SYMBOL	PARAMETER	Yellow	UNIT
Pad	Power Dissipation	85	mW
VR	Reverse Voltage	5	V
lF	Average Forward Current(Duty=0.1,1KHZ)	30	mA
IPF	Peak Forward Current Per Chip(Duty=0.1,1KHz)	120	mA
-	Derating Linear From 25°C	0.40	mA/°C
Topr	Operating Temperature Range	-40°C to 85°C	
Tstg	Storage Temperature Range	-40°C to 85°C	

ELECTRO-OPTICAL CHARACTERISTICS : (Ta = 25° C)

SYMBOL	DESCRIPTION	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
VF	Forward Voltage	IF=20mA	1.7	2.0	2.3	V
IR	Reverse Current	VR=5V			100	μA
λD	Dominant Wavelength	IF=20mA	584	589	594	nm
Δλ	Spectral Line Half-Width	IF=20mA		30		nm
201/2	Half Intensity Angle	IF=20mA		60		deg
١v	Luminous Intensity	IF=20mA	7.7	20	57.8	mcd

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21

PA	RA	4
īg	ht	

LH34D202C-HTS

REV:A/5

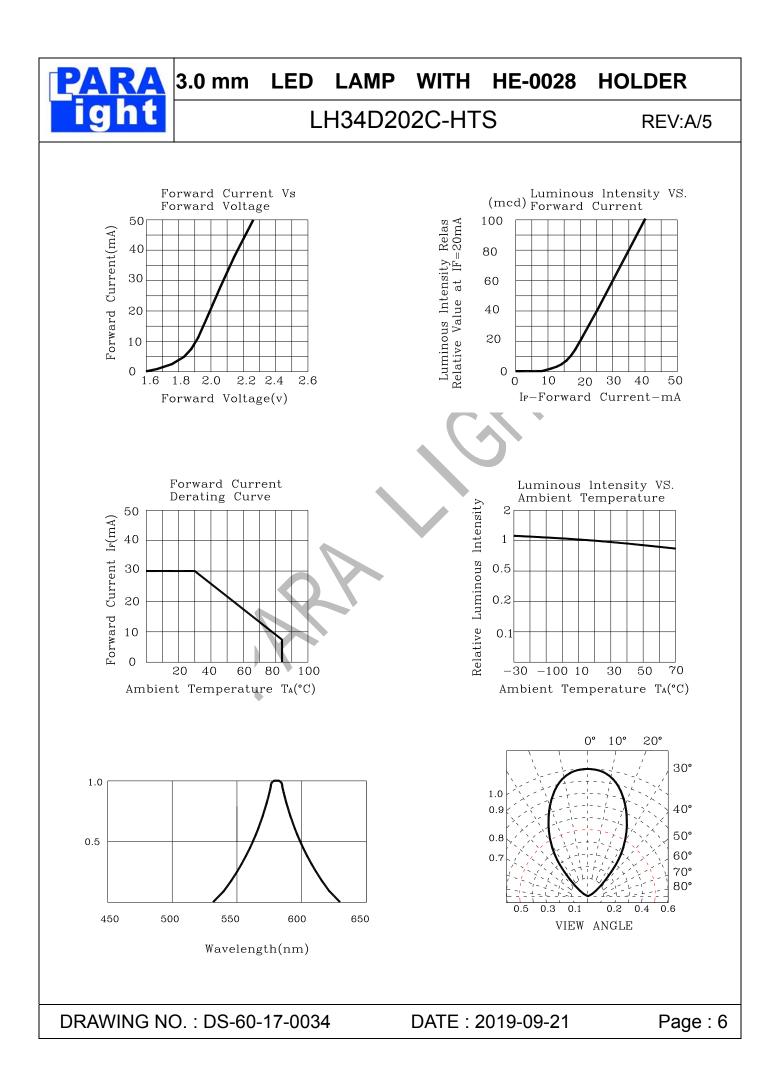
FEATURES

- * 3.0mm DIA LED LAMP
- * LOW POWER CONSUMPTION.
- * I.C. COMPATIBLE.
- * LONG LIFE SOLID STATE RELIABILITY.
- * PB FREE PRODUCTS(Compliant with EU's RoHS.)

CHIP MATERIALS

- * Dice Material : GaAlInP/GaAs
- * Light Color : Yellow Green
- * Lens Color : Green Diffused

ABSOLUTE MAXIMUM RATING : (Ta = 25°C)


SYMBOL	PARAMETER	Yellow Green	UNIT
Pad	Power Dissipation	78	mW
VR	Reverse Voltage	5	V
lf	Average Forward Current(Duty=0.1,1KHZ)	30	mA
IPF	Peak Forward Current Per Chip(Duty=0.1,1KHz)	120	mA
-	Derating Linear From 25°C	0.40	mA/°C
Topr	Operating Temperature Range	-40°C to 85°C	
Tstg	Storage Temperature Range	-40°C to 85°C	

ELECTRO-OPTICAL CHARACTERISTICS : (Ta = 25° C)

SYMBOL	DESCRIPTION	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
VF	Forward Voltage	IF=20mA	1.7	2.0	2.3	V
lr	Reverse Current	VR=5V			100	μA
λD	Dominant Wavelength	IF=20mA	566	570	576	nm
Δλ	Spectral Line Half-Width	IF=20mA		30		nm
201/2	Half Intensity Angle	IF=20mA		60		deg
١v	Luminous Intensity	IF=20mA	7.7	20	57.8	mcd

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21

PARA	
ight	

LH34D202C-HTS

REV:A/5

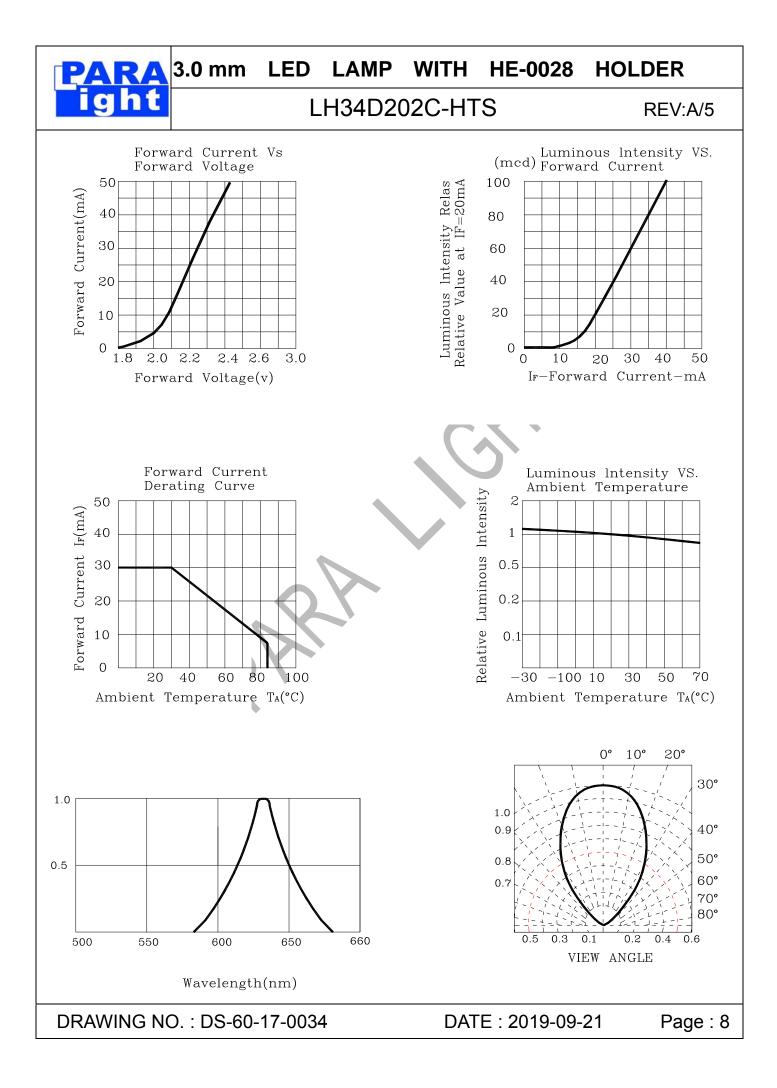
FEATURES

- * 3.0mm DIA LED LAMP
- * LOW POWER CONSUMPTION.
- * I.C. COMPATIBLE.
- * LONG LIFE SOLID STATE RELIABILITY.
- * PB FREE PRODUCTS(Compliant with EU's RoHS.)

CHIP MATERIALS

- * Dice Material : GaAlAs
- * Light Color : RED
- * Lens Color : RED Diffused

ABSOLUTE MAXIMUM RATING : (Ta = 25°C)

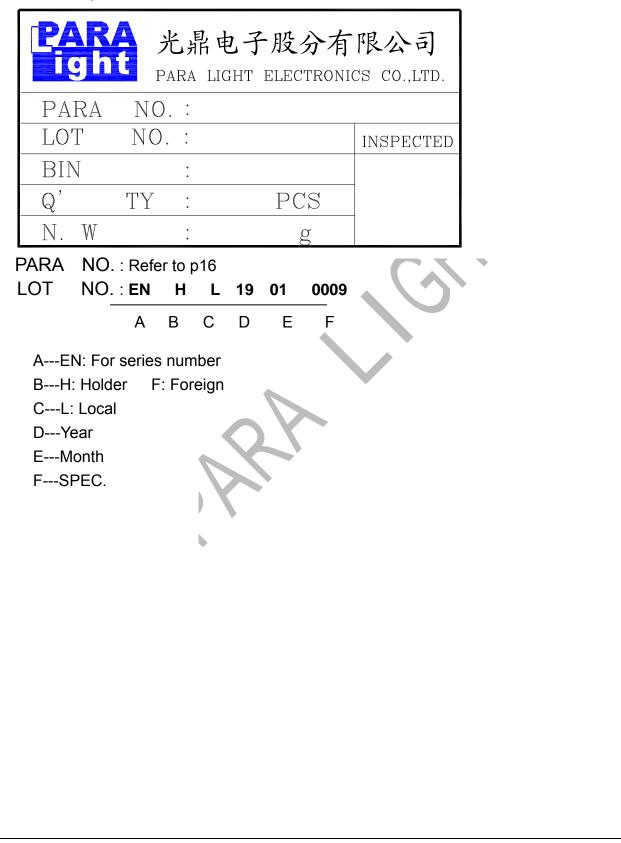

SYMBOL	PARAMETER	RED	UNIT
Pad	Power Dissipation	78	mW
VR	Reverse Voltage	5	V
lF	Average Forward Current(Duty=0.1,1KHZ)	30	mA
IPF	Peak Forward Current Per Chip(Duty=0.1,1KHz)	120	mA
-	Derating Linear From 25°C	0.40	mA/°C
Topr	Operating Temperature Range	-40°C to 85°C	
Tstg	Storage Temperature Range	-40°C to 85°C	

ELECTRO-OPTICAL CHARACTERISTICS : (Ta = 25° C)

SYMBOL	DESCRIPTION	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
VF	Forward Voltage	IF=20mA	1.8	2.1	2.6	V
lr	Reverse Current	VR=5V			100	μA
λD	Dominant Wavelength	IF=20mA	634	640	649	nm
Δλ	Spectral Line Half-Width	IF=20mA		30		nm
201/2	Half Intensity Angle	IF=20mA		60		deg
١v	Luminous Intensity	IF=20mA	7.7	20	57.8	mcd

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21



LH34D202C-HTS

REV:A/5

Label Explanation

DRAWING NO. : DS-60-17-0034

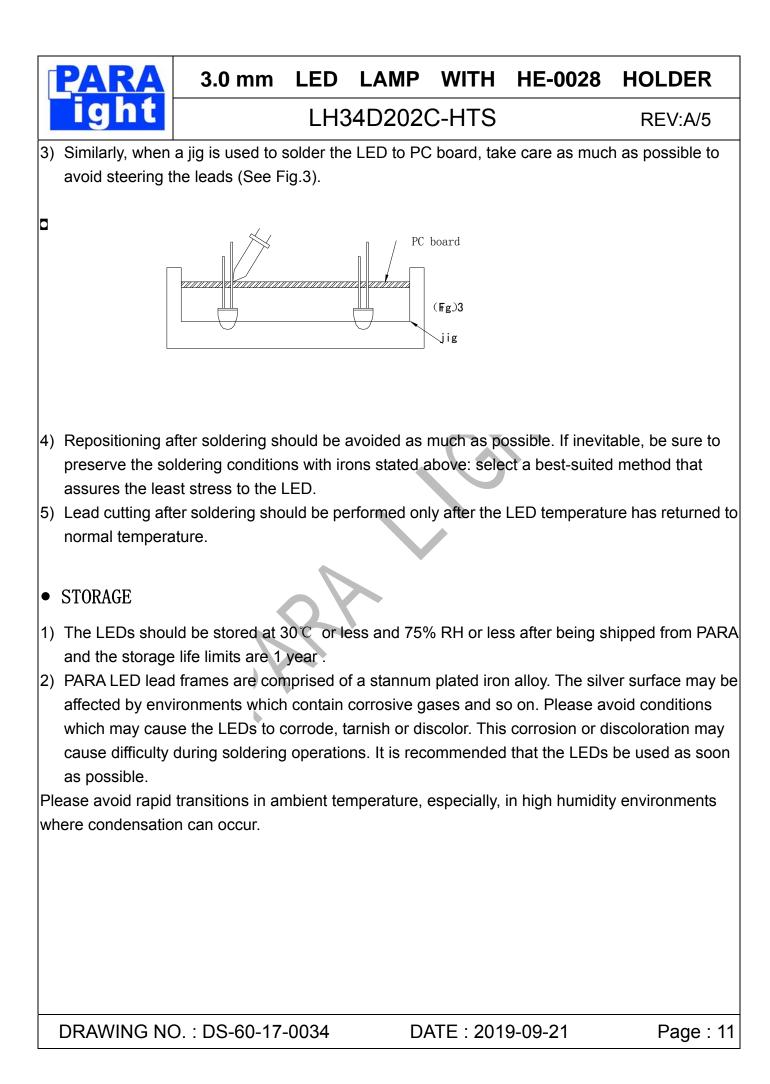
DATE : 2019-09-21

PARA ight

PARA 3.0 mm LED LAMP WITH HE-0028 HOLDER

LH34D202C-HTS

REV:A/5

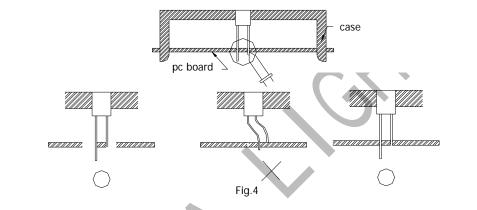

•SOLDERING

METHOD	SOLDERING CONDITIONS	REMARK			
DIP SOLDERING	have of the package				
Preheat Preheat temperature: 100-130 Temperature sec(105°c max)		is recommended.Attached data of temperatuare cure for your reference			
SOLDERING IRON	Soldering iron: 30W or smaller Temperature at tip of iron: 380℃ or lower Soldering time: within 10 sec.	 During soldering, take care not to press the tip of iron against the lead. (To prevent heat from being transferred directly to the lead, hold the lead with a pair of tweezers while soldering 			
1) When solderi	ng the lead of LED in a condition that the	package is fixed with a panel (See Fig.1),			
be careful not	t to stress the leads with iron tip.				
	Panel (Fig. 1)	wries			
2) When solderi	ng wire to the lead, work with a Fig (See	Fig.2) to avoid stressing the package.			
Leave a slight clearance (Fig. 2)					
copper and slive	on in the tinning oven for product-tinning, r is proposed with the temperature of Ce s tin 95.5: copper 3.5: silver 0.5 by perce	•			

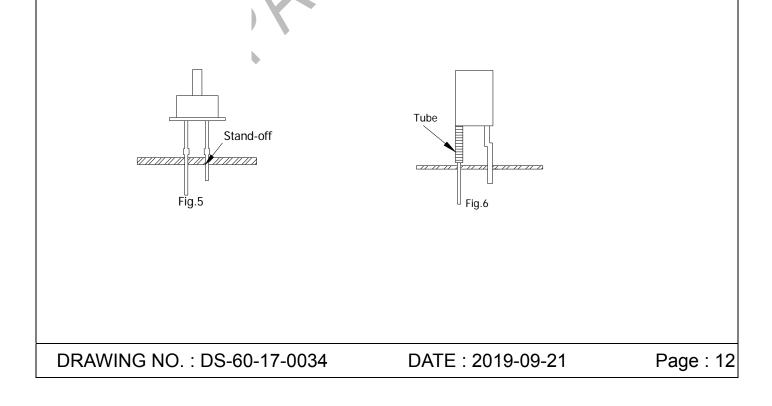
alloyed solution is tin 95.5: copper 3.5: silver 0.5 by percentage. The time of tinning is constantly 3 seconds.

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21



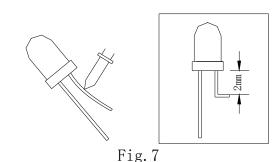
LH34D202C-HTS


REV:A/5

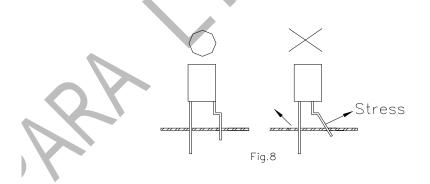
•LED MOUNTING METHOD

3) When mounting the LED by using a case, as shown Fig.4, ensure that the mounting holds on the PC board match the pitch of the leads correctly-tolerance of dimensions of the respective components including the LED should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the leads and board holes, the diameter of the board holes should be slightly larger than the size of the lead. Alternatively, the shape of the holes should be made oval. (See Fig.4)

4) Use LEDs with stand-off (Fig.5) or the tube or spacer made of resin (Fig.6) to position the LEDs.

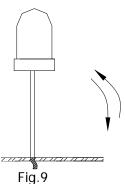


LH34D202C-HTS


REV:A/5

•FORMED LEAD

1) The lead should be bent at a point located at least 2mm away from the package. Bending should be performed with base fixed means of a jig or pliers (Fig.7)


- 2) Forming lead should be carried our prior to soldering and never during or after soldering.
- Form the lead to ensure alignment between the leads and the hole on board, so that stress against the LED is prevented. (Fig.8)

•LEAD STRENGTH

1) Bend strength

Do not bend the lead more than twice. (Fig.9)

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21

LH34D202C-HTS

REV:A/5

Tensile strength (@Room Temperature)
 If the force is 1kg or less, there will be no problem. (Fig.10)

OK!

• HEAT GENERATION

 Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.

The operating current should be decided after considering the ambient maximum temperature of LEDs.

•CHEMICAL RESISTANCE

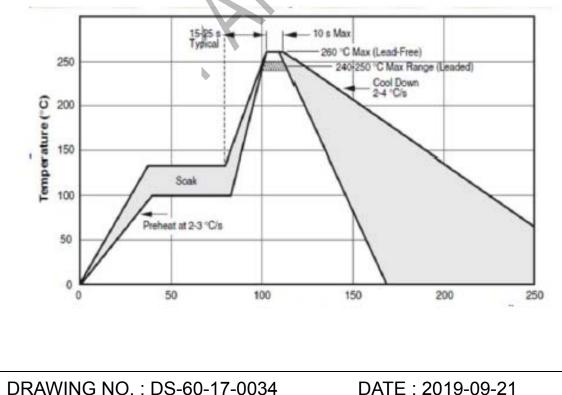
- 1) Avoid exposure to chemicals as it may attack the LED surface and cause discoloration.
- 2) When washing is required, refer to the following table for the proper chemical to be sued. (Immersion time: within 3 minutes at room temperature.)

SOLVENT	ADAPTABILITY	
Freon TE	\odot	
Chlorothene	\times	
Isopropyl Alcohol	\odot	
Thinner	\times	
Acetone	\times	
Trichloroethylene	×	
\odot Usable \times Do not use.		

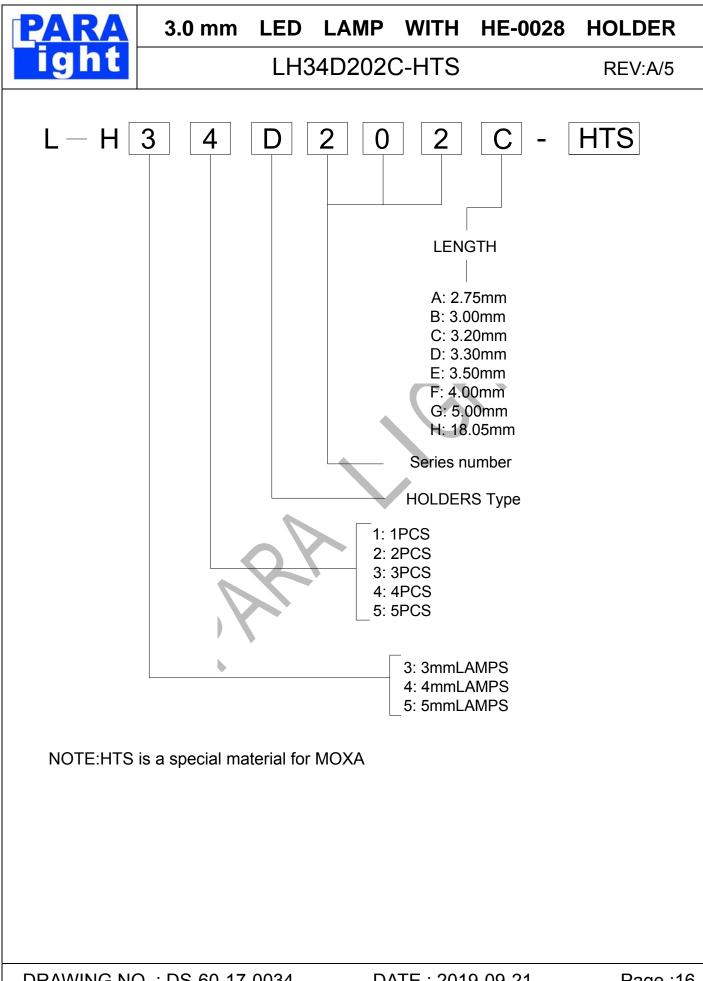
NOTE: Influences of ultrasonic cleaning of the LED resin body differ depending on such factors as the oscillator output, size of the PC board and the way in which the LED is mounted. Therefore, ultrasonic cleaning should only be performed after confirming there is no problem by conducting a test under practical.

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21



LH34D202C-HTS


REV:A/5

OTHERS

- 1) Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating when using the LEDs with matrix drive.
- Flashing lights have been known to cause discomfort in people; you can prevent this by taking precautions during use. Also, people should be cautious when using equipment that has had LEDs incorporated into it.
- 3) The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances). Consult PARA's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor control systems, automobiles, traffic control equipment, life support systems and safety devices).
- 4) User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from PARA. When defective LEDs are found, the User shall inform PARA directly before disassembling or analysis.
- 5) The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
- 6) The appearance and specifications of the product may be modified for improvement without notice.

7) Recommended Wave Soldering Profile

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21

LH34D202C-HTS

REV:A/5

Bin Code List				
Luminous Intensity (IV), Unit:mcd@20mA				
Bin	Min	Max		
Code(SR/Y/G)				
G	7.70	10.8		
Н	10.8	15.1		
Ι	15.1	21.1		
J	21.1	29.5		
K	29.5	41.3		
L	41.3	57.8		

Tolerance of each bin are±15%

Dominant Wavelength (λD), Unit:nm@20mA							
Bin Code(SR)	Min	Max					
R3	634	639					
R4	639	644					
R5	644	649					

Tolerance of each bin are±1nm

Dominant Wavelength (λD), Unit:nm@20mA							
Bin Code(Y)	Min	Max					
Y3	584	586					
Y4	586	588					
Y5	588	590					
Y6	592	594					

Tolerance of each bin are±1nm

Dominant Wavelength (λD), Unit:nm@20mA									
Bin Code(G)	Min	Max							
G16	566	568							
G17	568	570							
G18	570	572							
G19	572	574							
G20	574	576							

Tolerance of each bin are±1nm

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21

LH34D202C-HTS

REV:A/5

LH34D202C-HTS package rule Note:

- 1、 Each plate of 520 PCS
- 2、Within each small box 5 plate, quantity is 2600 PCS

DRAWING NO. : DS-60-17-0034

DATE : 2019-09-21

LEONA UL Acquisition Status of a typical Grade

Mt		Mirimum	Fisme		RTI Mech	anical	Hot	High	High	Arc	IEC	2		Minimum	Flame		RTI Mect	nanical	
120.00	SMO • Deg S	Color	lhickness	Class	Becirical	With	Without	· wire	emp	voll track	resistance	track	f Mil Dig	Color	1hickness	Class	Bectrical	With	Withou
12.2			(cnm)	(UL94)		Impact	impad	ļgn.	ign.	rate	(D495)	(CTI)			(1251)	(UL94)		Impaci	Impac
Г	10000		0.70	V-2	105	75	85	4	0	-			All	1.5	HB	65	65	65	
11.2	1300S 1300F	1 41 1 2 5	1.5	V-2	105	75	85	4	0		\rightarrow	100	90G50		3.0	HB	65	55	65
1	ISUUF		9.0	V-2	105	75	85	З	0	0	6	O	02022		1.5	HB	65	55	65
			0.75	V-2	120	95	90	4	0	-	-	-	93G33	All	3.0	HB	65	55	65
4	13025	All	1.5	V-2	120	95	80	3	0		-	1000	100		0.75	HB	125	90	120
		188225	3.0	V-2	120	9 5	100	3	0	0	5	٥	54G33	All	1.5	HB	125	90	120
1			0.71	V-2	130	105	105	4	0	-		-		2712	3.0	HB	125	BO	120
	14025	All	1,5	V-2	130	105	105	3	0	<u></u>	-			0		12			
100	1402F	C. C. C. C.	3.0	V-2	130	105	105	3	0	0	6	1	54G43	All	0.80	HB	65	55	65
F		ê ş	0.69	V-2	120	95	100	4	0	-	-	-	UTGTO	P 414	4.44		0.5	~	
	1402SH	Ali	1.5	V-2	120	95	100	3	0		- 1	_	16-17-16-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18-17-18		0.75	HB	125	105	105
ľ	HULSH		3.0	V-2	120	95	100	2	0	0	6	1	1330G	AI	1.5	1 1993	125	105	115
-		7 3	0.75	HB	125	110	115	4	0	_	~		10000		3.0	HB	125	105	120
1	13G15	All	1.5	HB	125	110	120	3	0		-	-	127-12763-977-5 1973-97-7		0.71	HB	105	75	76
	13015	Au	3.0	HB	125	110	120	2	0	0	5	0	1425 m	All	1.5		105	75	75
-		<u>.</u>	0.75	HB	6 <u>8 9 6 7</u>	1000	10000	4	0	-		_	MROOT			HB	-		-
ļ		100000		125	110	110	1.2	0.200			-	<u> 1988 (1985)</u>		3.0	HB	105	75	80	
1	13G25	Ali	1.5	HB	125	110	110	3	0		-			1000	0.71	V-0	105	65	65
			3.0	HG	125	110	120	2	0	1	5	0.	FR200	All	1.5	V-0	105	65	65
	9.0.0		0.75	HE	125	105	110	3	a	-	100	100			3.0	٧.0	105	65	65
1	130DG	Ali	1.5	HB	125	105	110	3	0		-		201220-2120-217		0.38	V-0 V-0	65 130	65 90	65 105
			3.0	HB	125	110	120	3	0	1	5	0	FR370	All	1.5	V-0	130	105	105
		50000000000000000000000000000000000000	0.75	HB	110	110	115	4	0	-	—	_			3.0	₩-0	130	105	105
1	13G43	All	1.5	HB	110	110	120	2	0	-	1000	-		1.04	0.70	V-0	65	65	65
		-	3.0	НB	110	110	120	3	0	1	5	0	FR561	All	0.75	V-0	130	90 105	105
					0.00										3.0	V-0	130	105	105
1	14G15	All	0.75	HB	65	5 \$	65	—	-			- 1			0.75	¥-0	105	105	105
													FG170	AII	1.5	V-O	105	105	105
			0.71	HB	120	90	110	4	٥	100		2 (3.2	V-0	105	105	105
1	1402G	All	1.5	HB	120	90	120	3	0				1.1		0.41	V-0	65		65
			3.0	HB	120	100	125	0	D	1	6	1		NC	0.50	V-0	130	- 15	65
	Acade antes	7 - 7	0.75	HB	65	65	65	з	Q	-		-	FG172	1000	0.75	V-0	130	115	120
	14G25	All	1.5	HB	140	125	140	3	Ð				2 h	All	1.5 3.0	V-0	130	115	120
ľ	14G33		9.0	HB	140	125	140	9	Ð	0	6	1	2	1	0.5	V-0 V-0	130	65	65
ŀ		1	0.75	HB	65	65	55	3	0	_		_		NC	0.72	V-O	65	65	65
	14000	All		HB			10. 15 to 1	10000	0				FG173		0.80	V-0	130	65	120
ľ	14G50	~	1.5 9.0	HB	140	125 125	140	3 9	0	0	5	0		All	1.5 3.0	V-0 V-0	130 130	65 65	120 120

•

•

nical	Hot		High volt	Атс	IEC
Without Impact	wire ign.	arc Ign.	track rate	(D495)	track (CTI)
65	2	0	1	-	-
65	0	0	Q	5	0
65	3	0	1		
65	Û	0	¢	5	0
120	З	0	1000		-
		10 10 M	- Sectors	202203	Control Control
120	2	0	2		1.2. <u></u>
120	۵	٥	1	6	1
65	-	-2	-	-	-
105	4	Q	-	-	
115	٩	٥	_	-	
120	0	0	5	5	٥
76	4	0	(<u> </u>	- 2	·
75	3	0		-	
BO	3	0	Ø	Б	Ð
65	3	0	-		-
65		-			10000
- C. A. C. A. S.	3	Ð	3,002	1	9. 797 . 2
65	2	Q	0	5	0
65			1	-	20 200
105	4	1			100 100
105	3	0	-		
105 65	2	0	0	5	0
105	4	1			<u> </u>
105	4	0	-		
105		0	D	5	0
105	0	0	-	-	-
105	a	Þ		_	
105	0	0	1	6	з
65	-	-	- 10 	-	3
65 65					8
120	0	0	-	-	
	0	0		1.000	100
120	0	0	1	-	2
120 65	0	0		6	-
65	0	0			
120		_			1992 2. a.
120	0	0		-	
120	0	0	3	7	2

QMRZ22nponent - Plastics						E482
ASAHI KASEI CHEMI	CALS CORP					
HIBIYA-MITSUI BLDG, 1-2 Y	URAKUCHO 1-CHOME, C	CHIYODA-KU, TOKYO 100-00	06 JP			
1300S, 1300F						
Polyamide 66 (PA66), "	eona", furnished as i	nellets				
	Min Thk	Flame				TI RTI
Color	(mm)	Class	HWI	HAI		np Str
ALL	0.71	V-2	4	0	105 7	5 85
	1.5	V-2	4	0	105 7	5 85
	3.0	V-2	3	0	105 7	5 85
Com	parative Tracking Index (C	CTI): O			Dimensional Stability	y (%): 0
High-Voltag	e Arc Tracking Rate (HVT	TR): 0		High Volt, L	ow Current Arc Resis (I	0495): 6
		nm): - aterials, furnishings and related co parts of end-product devices and		all-scale test data is		ing the flammability of th
plastic materials	loes not pertain to building m	aterials, furnishings and related or	appliances, where	all-scale test data is a the acceptability of	intended solely for determin	ing the flammability of th
plastic materials	loes not pertain to building m	aterials, furnishings and related or parts of end-product devices and	appliances, where	all-scale test data is a the acceptability of	intended solely for determin	ing the flammability of th
plastic materials Report Date: 7/11/1972	loes not pertain to building m used in the components and	aterials, furnishings and related or parts of end-product devices and	appliances, where	all-scale test data is a the acceptability of	intended solely for determin	ing the flammability of th
plastic materials Report Date: 7/11/1972	loes not pertain to building m used in the components and	aterials, furnishings and related or parts of end-product devices and	appliances, where	all-scale test data is a the acceptability of	intended solely for determin the combination is determin	ing the flammability of th
plastic materials Report Date: 7/11/1972	loes not pertain to building m used in the components and	aterials, furnishings and related or parts of end-product devices and	appliances, where	all-scale test data is a the acceptability of	intended solely for determin the combination is determin Thickness	ing the flammability of th
plastic materials Report Date: 7/11/1972 IEC and ISO Te Fest Name	loes not pertain to building m used in the components and	aterials, furnishings and related or parts of end-product devices and Underwriters La	appliances, wher	all-scale test data is a the acceptability of c® Units	intended solely for determin the combination is determin	ing the flammability of ed by ULI. Compor Plastic Value
plastic materials Report Date: 7/11/1972 IEC and ISO Te Fest Name	loes not pertain to building m used in the components and	aterials, furnishings and related or parts of end-product devices and Underwriters La Test Method	appliances, wher	all-scale test data is a the acceptability of c®	intended solely for determin the combination is determin Thickness Tested (mm)	ing the flammability of ed by ULI. Compor Plastic Value V-2 (ALL)
plastic materials Report Date: 7/11/1972 IEC and ISO Te Test Name	loes not pertain to building m used in the components and	aterials, furnishings and related or parts of end-product devices and Underwriters La Test Method	appliances, wher	all-scale test data is a the acceptability of c® Units	Intended solely for determin the combination is determin Thickness Tested (mm) 0.71	ing the flammability of ed by ULI. Compor Plastic Value
plastic materials Report Date: 7/11/1972 IEC and ISO Te Test Name EC Flammability	oes not pertain to building m used in the components and est Methods	aterials, furnishings and related or parts of end-product devices and Underwriters La Test Method	appliances, wher	all-scale test data is a the acceptability of c® Units	Thickness Tested (mm) 0.71 1.5	ing the flammability of ed by ULI. Compor Plastic Value V-2 (ALL) V-2 (ALL)
plastic materials Report Date: 7/11/1972 IEC and ISO Te Test Name IEC Flammability Glow-Wire Flammability	oes not pertain to building m used in the components and est Methods (GWFI)	aterials, furnishings and related or parts of end-product devices and Underwriters La Test Method IEC 60695-11-10	appliances, wher	all-scale test data is a the acceptability of c® Units	Thickness Tested (mm) 0.71 1.5	ing the flammability of ed by ULI. Compor Plastic Value V-2 (ALL) V-2 (ALL)
	oes not pertain to building m used in the components and est Methods (GWFI) T)	Test Method IEC 60695-2-12	appliances, wher	all-scale test data is a the acceptability of c® Units	Thickness Tested (mm) 0.71 1.5	ing the flammability of ed by ULI. Compor Plastic Value V-2 (ALL) V-2 (ALL)
plastic materials Report Date: 7/11/1972 IEC and ISO Te Test Name IEC Flammability Glow-Wire Flammability Glow-Wire Ignition (GWI IEC Comparative Trackir	oes not pertain to building m used in the components and est Methods (GWFI) T)	Test Method IEC 60695-2-12	appliances, wher	all-scale test data is a the acceptability of c® Units Class (color) C C C	Thickness Tested (mm) 0.71 1.5	ing the flammability of ed by ULI. Compor Plastic Value V-2 (ALL) V-2 (ALL)
plastic materials Report Date: 7/11/1972 IEC and ISO To Test Name EC Flammability Glow-Wire Flammability Glow-Wire Ignition (GWI	oes not pertain to building m used in the components and est Methods (GWFI) T) ng Index	Test Method IEC 60695-2-12 IEC 60695-2-13 IEC 60112	appliances, wher	all-scale test data is a the acceptability of c® Units Class (color) C C C C Volts (Max)	Thickness Tested (mm) 0.71 1.5	ing the flammability of ed by ULI. Compor Plastic Value V-2 (ALL) V-2 (ALL)

塑膠材料符合性保證書 CERTIFICATE OF COMPLIANCE OF PLASTIC MATERIAL

	供應商			
	VENDER 光界	晶電子股份有限公司	Ĩ	
	料號		品名	
	PART NUMBER		PART DESCRIPTION	光鼎 holder 產品
	數量/訂單號碼		出貨日期	
	QUANTITY/P.O. NO.		SHIPPING DATE	
	原料製造商			
	MATERIAL SUPPLIER		连云港光鼎电子有限公	、司
	原料品名/型號/規格 MATERIAL DESCREPTION SPEC	N / MODEL /	光鼎holder函	▼ <u> 主 </u> 四
	原料 UL 號碼		原料防火等級	
	MATERIAL UL FILE NUM	BER	MATERIAL FLAMMA	BILITY CLASS
	E48285	5	V	-2
供應商	。 保證 VENDER GUARAN			
1.	本批產品確實符合 UL 跟蹤檢 替,本公司願負賠償之責。	驗服務程序(FUS)的要:	求,確實依上述規格供應,	若有變更冒
	FOR THIS P.O., IF THERE IS RESPONSIBLE FOR THE CC		THE LIST ABOVE, WE WI	LL BE
2.	本批產品使用的回收料(次料)	不超過 25%		
	THE REPROCESSED MATER	IAL USED IN THIS SH	IIPMENT DOES NOT EXC	EED 25%
	供應商簽章及蓋公司章 VENDER SIGNATURE &	ς COMPANY SEAL	李星儀	有子光 景馬公司份電

Form Number PD.208